第22回日本インターネットガバナンス会議

Internet Week 2017 IoTセキュリティセッションの 論点は何だったのか?

2017.11.30 情報通信研究機構 サイバーセキュリティ研究室 上席研究技術員 久保 正樹

自己紹介

- 久保 正樹(くぼ まさき)
- ▶ 情報通信研究機構 (NICT) サイバーセキュリティ研究 所 サイバーセキュリティ研究室
 - ▶ Darknet & Livenet 解析チームリーダー
- ・他にも
 - ▶ Internet Week 2017 のプログラム委員
 - ▶ JPCERT コーディネーションセンター専門委員兼共 同研究員

今日のお話

▶昨日の Internet Week 2017 のセッション「S10 転ばぬ先のIoTセキュリティ~コウカイする前に知るべきこと~」の発表を振り返り、IoTセキュリティのキーワードを考えたいと思います。

[今週のニュース] マルウェア感染する IoT 機器の急増

- ▶ 国内でマルウェア感染するIoT機器が急増
 - ▶約1万8000台(NICT 観測)
 - Miraiの新たな亜種の疑い
- ▶ 感染機器は?
 - ブロードバンドルータ
 - トネット家電等
- ▶感染の原因は?
 - ▶機器の部品に存在する脆弱性
 - ▶ デフォルトパスワード

I o T機器を狙うウイルス感染 100倍に急増 先月から

11月26日 16時56分 IT・ネット

さまざまなものをインターネットに接続する「IoT」の普及が進む中、日本国内で IoT機器を狙ったコンピューターウイルスの感染が今月に入って先月の100倍に 急増し、大規模なサイバー攻撃の危険が高まっていることが、大手通信事業者の調査でわかりました。

NHK NEW WEB の報道(2017年11月26)

海外(アルゼンチン)でも同時期に感染が拡大

ISPがユーザに配布したルータに脆弱性

- ・telnet / デフォルトパスワード
- ・ハードコードされた su パスワード

2017-10-31

脆弱性のPoC(user/password)が公開

(推測)

Mirai の亜種にPoCが実装される

2017-11-22 **当該機器が感染.**

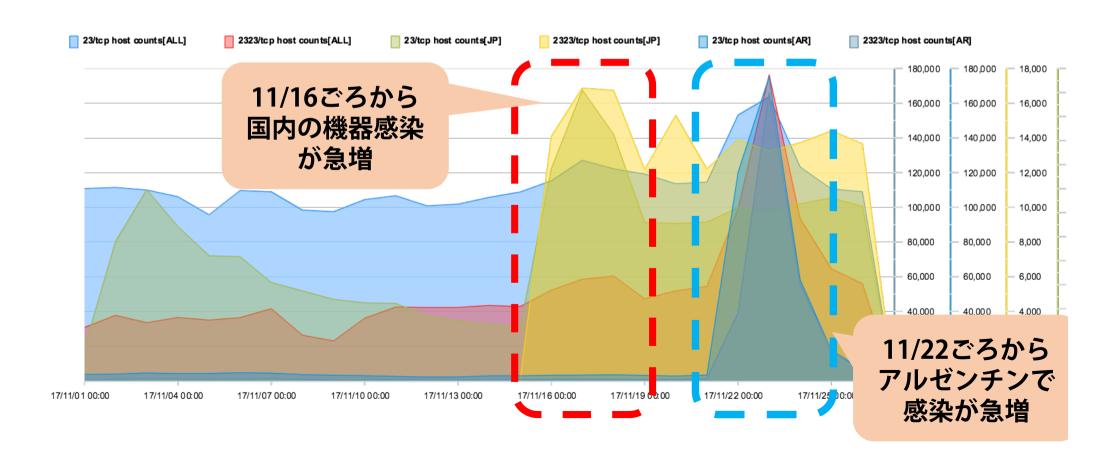
感染機器からのスキャンを観測

Early Warning: A New Mirai Variant is Spreading Quickly on Port 23 and 2323

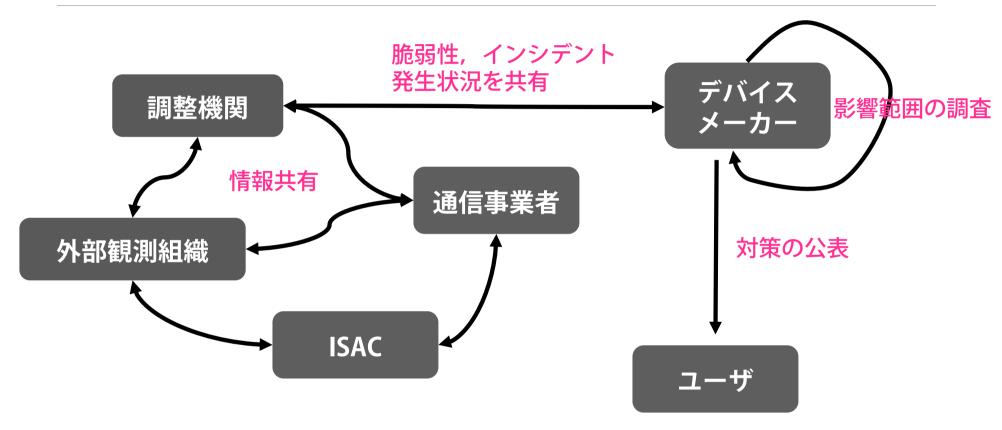
24 NOVEMBER 2017 on IoT Botnet, Mirai, ScanMon, New Threat, Botnet Measurement

[Updates on 2017-11-28]

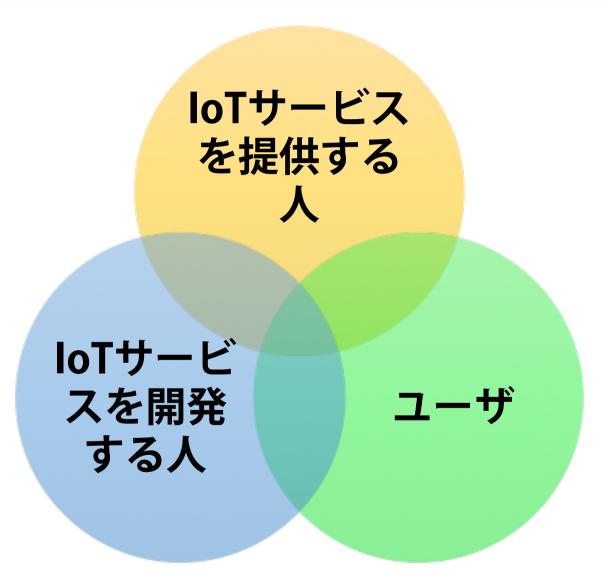
- Both C2s have been sink-holed now by security community.
- admin/CentryL1nk is a typo for admin/CenturyL1nk.


About 60 hours ago, since 2017-11-22 11:00, we noticed big upticks on port 2323 and 23 scan traffic, with almost 100k unique scanner IP came from Argentina. After investigation, we are quite confident to tell this is a **new mirai variant**.

360 NetLab による分析レポート


感染したIoT機器からのスキャン

スキャン元 IPアドレス数の増加


事後対応の限界

- **☞ IoT 機器の増加 / 攻撃の多様化**
- End of Life / End of Support

誰が どうすれば 防げるのか?

IoTセキュリティのプレイヤー

ISO/IEC CD 30141 Internet of Things Reference Architecture (IoT RA) $\downarrow 5$

IW IoTセキュリティセッションの講演内容

繋がるデバイスの現在

吉岡 克成 (横浜国立大学)

知られざるデバイスセキュリティの世界

金居 良治 (株式会社FFRI)

体系的なIoTセキュリティへの取り組み方

熊白 浩丈 (NRIセキュアテクノロジーズ株式会社)

PSIRTと事後対応の取り組み

島田 康晴 (株式会社アイ・オー・データ機器)

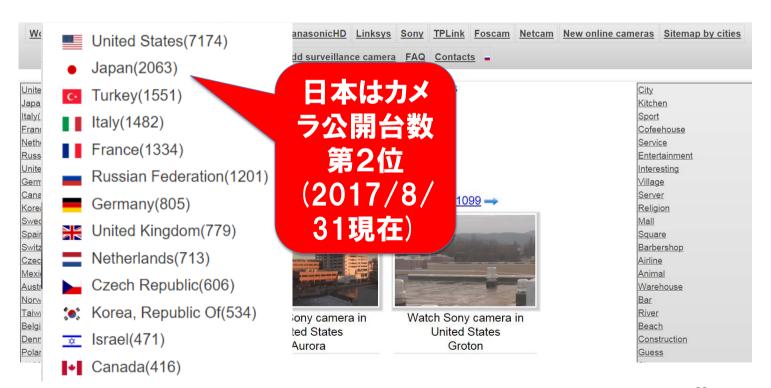
loTサービ スを提供 する人 loTサービ スを開発 する人

ユーザ

攻撃の実態・攻撃者像の最新動向

吉岡 克成氏 (横浜国立大学)

攻撃する側

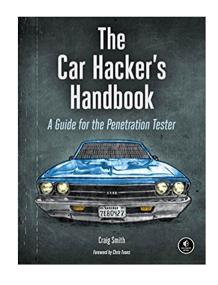

- ▶ IoT マルウェアの侵入方法が多様化
 - ▶ 感染原因 No.1 は telnet
 - 攻撃カメラの"のぞき見"
- ▶ 攻撃規模の拡大
 - ▶ 100Gbpsを超えるDDoS攻撃の基盤 として感染したIoT機器が悪用される
- 攻撃目的の多様化
 - ▶ 広告クリック
 - ▶ 有料放送の認証情報の取得
 - ▶ 機器の破壊
- 攻撃インフラの堅牢化
 - C2サーバ (インフラとして) もIoT 機器
- 攻撃者はこれら全てを把握

守る側

- トIoTのサービス提供者・ 開発者は攻撃者の実態を 知らない
- 駆除の方法論の検討,情報共有が必要

吉岡氏の講演スライドより

ネットワークカメラ画像無断公開サイト Insecam(ロシア)



デバイスのセキュリティ

金居 良治氏 (株式会社FFRI)

- ▶ デバイス解析技術が高度化し、機器の脆弱性を見つける土壌が成熟している
 - ▶ファームウェア解析技術が手軽な「道具」に
 - ▶ハードウェア解析の方法論、ノウハウの成熟

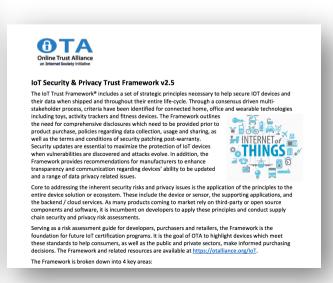
- 対策アプローチの地道な適用以外の道はない
 - ▶プロセス (SDLC)
 - ファジング
 - テスト
 - ▶脅威分析
 - ▶ アップデート配信の仕組み

金居氏の講演スライドより

FFRI,Inc.

ファームウェア解析に関する問題

- ◆ファームウェア解析を支援するツールが年々、整備されており、難易度は下ってきている
- ◆解説ページなども存在するため、もはやファームウェア解析は容易である前提での製品開発が必要


IoTセキュリティガイドラインの活用

熊白 浩丈氏 (NRIセキュアテクノロジーズ株式会社)

- ▶ IoT セキュリティガイドラインは策定途上かつ乱立
 - ▶ 各ガイドの詳細度,対象読者(運用・管理者,開発者,ユーザ)が異なる
 - ▶見極めが必要

▶ 製品,事業分野に応じて,必要なガイドを組合せて使 う「ボトムアップ」的アプローチがおすすめ

熊白氏の講演スライドより

2. ITとは異なるセキュリティ対策

例:自社製品がIoTデバイスの場合

	米国				欧州	グローバル			国内
	CSA	ОТА	FTC	FBI	ENISA	GSAMA	OWASP	IEEE	IoT推進 コンソーシアム
①デバイス	0		0	\circ		0		\bigcirc	
2NW	全領	全領域に配慮されたもの+ 詳しいもの・粒度の細かいもの を組み合わせる。				0	0	\circ	0
3PF	詳し					\circ		\bigcirc	\circ
④マネジメント			0			\circ	\circ		\circ

•5つを全部見るのも大変・・・ 上記だと「GSMA+CSAでまずは見てみる」など 必要最小限の材料でアプローチしてみる。

© Copyright NRI SecureTechnologies, Ltd. All Rights Reserved. Proprietary & Confidential 無断での引用・転轍を禁じます。

PSIRT における製品セキュリティの取組み

島田 康晴氏 (株式会社アイ・オー・データ機器)

- ▶製品を市場に出せば、必ず誰かが脆弱性を見つけ、報告する
- ▶ 外部からの報告に対応できる社内体制 (PSIRT) の整備と脆弱性ハンドリングの成熟度の向上
 - ▶ ex. 開発部門だけでなく、管理部門、情シス、カスタマーサポートもメンバー
- ▶ 脆弱性を積極的に公表する企業文化

島田氏の講演スライドより

この事例のポイント

- 脆弱性情報が公開されたら、できるだけ速やかに脆弱性の内容を把握して、該当する商品がないかの調査を開始します。
- 調査の段階で該当商品が見つかった場合、速やかに調査中の旨の公開を行うことが望ましいです。
- 市場の脆弱性に対する意識の高まりから、時には顧客などからの問い合わせがすぐに届きます。会社としての対応を明示するためにも情報公開は有効です。
- 該当商品の調査を何処まで遡って調査するかは、商品リストのテン プレート化するなどしてあらかじめ決めておくと、楽になります。

[まとめ] loTセキュリティのキーワード

- ト機器の脆弱性対策がIoTセキュリティ実現の鍵
 - ▶ 脆弱性の悪用が被害の原因になっている
- ▶ PSIRT (Product Security Incident Response Team)
 - デバイスセキュリティ
 - ガイドラインの活用
 - 製品インシデント対応
 - ▶脆弱性情報の公表
- ▶ 「対策」をいかに末端の機器にまで届けるか
- ▶ IoT に対する脅威の観測と分析